Start Over Please hold this item Export MARC Display Return To Browse
 
     
Limit search to available items
Record: Previous Record Next Record
Author Zhang, Ming Qiu.
Title Self-healing polymers and polymer composites / Ming Qiu Zhang, Min Zhi Rong.
Publication Info Hoboken, N.J. : Wiley, c2011.



Descript xii, 416 p., [8] p. of plates : ill. (some col.)
Contents Preface. 1 Basics of Self-Healing: State of the Art. 1.1 Background. 1.1.1 Adhesive Bonding for Healing Thermosetting Materials. 1.1.2 Fusion Bonding for Healing Thermoplastic Materials. 1.1.3 Bioinspired Self-Healing. 1.2 Intrinsic Self-Healing. 1.2.1 Self-Healing Based on Physical Interactions. 1.2.2 Self-Healing Based on Chemical Interactions. 1.2.3 Self-Healing Based on Supramolecular Interactions. 1.3 Extrinsic Self-Healing. 1.3.1 Self-Healing in Terms of Healant Loaded Pipelines. 1.3.2 Self-Healing in Terms of Healant Loaded Microcapsules. 1.4 Insights for Future Work. References. 2 Theoretical Consideration and Modeling. 2.1 Molecular Mechanisms. 2.1.1 Self-Healing Below Glass Transition Temperature. 2.1.2 Self-Healing Above Glass Transition Temperature. 2.2 Healing Modeling. 2.2.1 Percolation Modeling. 2.2.2 Continuum and Molecular-Level Modeling of Fatigue Crack Retardation. 2.2.3 Continuum Damage and Healing Mechanics. 2.2.4 Discrete Element Modeling and Numerical Study. 2.3 Design of Self-Healing Composites. 2.3.1 Entropy Driven Self-Assembly of Nanoparticles. 2.3.2 Optimization of Microvascular Networks. 2.4 Concluding Remarks. References. 3 Extrinsic Self-Healing via Addition Polymerization. 3.1 Design and Selection of Healing System. 3.2 Microencapsulation of Mercaptan and Epoxy by in situ Polymerization. 3.2.1 Microencapsulation of Mercaptan. 3.2.2 Microencapsulation of Epoxy. 3.3 Characterization of Self-Healing Functionality. 3.3.1 Self-Healing Epoxy Materials with Embedded Dual Encapsulated Healant: Healing of Crack Due to Monotonic Fracture. 3.3.2 Factors Related to Performance Improvement. 3.3.3 Self-Healing Epoxy Materials with Embedded Dual Encapsulated Healant: Healing of Fatigue Crack. 3.3.4 Self-Healing Epoxy/Glass Fabric Composites with Embedded Dual Encapsulated Healant: Healing of Impact Damage. 3.4 Concluding Remarks. References. 4 Extrinsic Self-Healing via Cationic Polymerization. 4.1 Microencapsulation of Epoxy by UV Irradiation-Induced Interfacial Copolymerization. 4.2 Encapsulation of Boron-Containing Curing Agent. 4.2.1 Loading Boron-Containing Curing Agent onto Porous Media. 4.2.2 Microencapsulation of Boron-Containing Curing Agent via Hollow Capsules Approach. 4.3 Characterization of Self-Healing Functionality. 4.3.1 Self-Healing Epoxy Materials with Embedded Epoxy-Loaded Microcapsules and (C2H5)2O.BF3-Loaded Sisal. 4.3.2 Self-Healing Epoxy Materials with Embedded Dual Encapsulated Healant. 4.4 Concluding Remarks. References. 5 Extrinsic Self-Healing via Anionic Polymerization. 5.1 Preparation of Epoxy-Loaded Microcapsules and Latent Hardener. 5.1.1 Microencapsulation of Epoxy by in situ Condensation. 5.1.2 Preparation of Imidazole Latent Hardener. 5.2 Self-Healing Epoxy Materials with Embedded Epoxy-Loaded Microcapsules and Latent Hardener. 5.3 Self-Healing Epoxy/Woven Glass Fabric Composites with Embedded Epoxy-Loaded Microcapsules and Latent Hardener: Healing of Interlaminar Failure. 5.4 Durability of Healing Ability. 5.5 Self-Healing Epoxy/Woven Glass Fabric Composites with Embedded Epoxy-Loaded Microcapsules and Latent Hardener: Healing of Impact Damage. 5.6 Concluding Remarks. References. 6 Extrinsic Self-Healing via Miscellaneous Reactions. 6.1 Extrinsic Self-Healing via Nucleophilic Addition and Ring-Opening Reactions. 6.1.1 Microencapsulation of GMA by in situ Polymerization. 6.1.2 Self-Healing Epoxy Materials with Embedded Single-Component Healant. 6.2 Extrinsic Self-Healing via Living Polymerization. 6.2.1 Preparation of Living PMMA and Its Composites with GMA-Loaded Microcapsules. 6.2.2 Characterization of Self-Healing Functionality. 6.3 Extrinsic Self-Healing via Free Radical Polymerization. 6.3.1 Microencapsulation of Styrene and BPO. 6.3.2 Self-Healing Performance of Epoxy Filled with Dual Capsules. 6.4 Concluding Remarks. References. 7 Intrinsic Self-Healing via Diels-Alder Reaction. 7.1 Molecular Design and Synthesis. 7.1.1 Synthesis and Characterization of DGFA. 7.1.2 Reversibility of DA Bonds and Crack Remendability of DGFA Based Polymer. 7.1.3 Synthesis and Characterization of FGE. 7.1.4 Reversibility of DA Bonds and Crack Remendability of FGE-Based Polymer. 7.2 Blends of DGFA and FGE. 7.2.1 Reversibility of DA Bonds. 7.2.2 Crack Remendability of Cured DGFA/FGE Blends. 7.3 Concluding Remarks. References. 8 Applications. 8.1 Coatings and Films. 8.2 Elastomers. 8.3 Smart Composites. 8.4 Tires. 8.5 Concluding Remarks. References. Appendix: Nomenclature. Index.
Note 400 annual accesses. UkHlHU
ISBN 9781118082874 (e-book)
Click on the terms below to find similar items in the catalogue
Author Zhang, Ming Qiu.
Subject Polymeric composites.
Self-healing materials.
Alt author Rong, Min Zhi.
Descript xii, 416 p., [8] p. of plates : ill. (some col.)
Contents Preface. 1 Basics of Self-Healing: State of the Art. 1.1 Background. 1.1.1 Adhesive Bonding for Healing Thermosetting Materials. 1.1.2 Fusion Bonding for Healing Thermoplastic Materials. 1.1.3 Bioinspired Self-Healing. 1.2 Intrinsic Self-Healing. 1.2.1 Self-Healing Based on Physical Interactions. 1.2.2 Self-Healing Based on Chemical Interactions. 1.2.3 Self-Healing Based on Supramolecular Interactions. 1.3 Extrinsic Self-Healing. 1.3.1 Self-Healing in Terms of Healant Loaded Pipelines. 1.3.2 Self-Healing in Terms of Healant Loaded Microcapsules. 1.4 Insights for Future Work. References. 2 Theoretical Consideration and Modeling. 2.1 Molecular Mechanisms. 2.1.1 Self-Healing Below Glass Transition Temperature. 2.1.2 Self-Healing Above Glass Transition Temperature. 2.2 Healing Modeling. 2.2.1 Percolation Modeling. 2.2.2 Continuum and Molecular-Level Modeling of Fatigue Crack Retardation. 2.2.3 Continuum Damage and Healing Mechanics. 2.2.4 Discrete Element Modeling and Numerical Study. 2.3 Design of Self-Healing Composites. 2.3.1 Entropy Driven Self-Assembly of Nanoparticles. 2.3.2 Optimization of Microvascular Networks. 2.4 Concluding Remarks. References. 3 Extrinsic Self-Healing via Addition Polymerization. 3.1 Design and Selection of Healing System. 3.2 Microencapsulation of Mercaptan and Epoxy by in situ Polymerization. 3.2.1 Microencapsulation of Mercaptan. 3.2.2 Microencapsulation of Epoxy. 3.3 Characterization of Self-Healing Functionality. 3.3.1 Self-Healing Epoxy Materials with Embedded Dual Encapsulated Healant: Healing of Crack Due to Monotonic Fracture. 3.3.2 Factors Related to Performance Improvement. 3.3.3 Self-Healing Epoxy Materials with Embedded Dual Encapsulated Healant: Healing of Fatigue Crack. 3.3.4 Self-Healing Epoxy/Glass Fabric Composites with Embedded Dual Encapsulated Healant: Healing of Impact Damage. 3.4 Concluding Remarks. References. 4 Extrinsic Self-Healing via Cationic Polymerization. 4.1 Microencapsulation of Epoxy by UV Irradiation-Induced Interfacial Copolymerization. 4.2 Encapsulation of Boron-Containing Curing Agent. 4.2.1 Loading Boron-Containing Curing Agent onto Porous Media. 4.2.2 Microencapsulation of Boron-Containing Curing Agent via Hollow Capsules Approach. 4.3 Characterization of Self-Healing Functionality. 4.3.1 Self-Healing Epoxy Materials with Embedded Epoxy-Loaded Microcapsules and (C2H5)2O.BF3-Loaded Sisal. 4.3.2 Self-Healing Epoxy Materials with Embedded Dual Encapsulated Healant. 4.4 Concluding Remarks. References. 5 Extrinsic Self-Healing via Anionic Polymerization. 5.1 Preparation of Epoxy-Loaded Microcapsules and Latent Hardener. 5.1.1 Microencapsulation of Epoxy by in situ Condensation. 5.1.2 Preparation of Imidazole Latent Hardener. 5.2 Self-Healing Epoxy Materials with Embedded Epoxy-Loaded Microcapsules and Latent Hardener. 5.3 Self-Healing Epoxy/Woven Glass Fabric Composites with Embedded Epoxy-Loaded Microcapsules and Latent Hardener: Healing of Interlaminar Failure. 5.4 Durability of Healing Ability. 5.5 Self-Healing Epoxy/Woven Glass Fabric Composites with Embedded Epoxy-Loaded Microcapsules and Latent Hardener: Healing of Impact Damage. 5.6 Concluding Remarks. References. 6 Extrinsic Self-Healing via Miscellaneous Reactions. 6.1 Extrinsic Self-Healing via Nucleophilic Addition and Ring-Opening Reactions. 6.1.1 Microencapsulation of GMA by in situ Polymerization. 6.1.2 Self-Healing Epoxy Materials with Embedded Single-Component Healant. 6.2 Extrinsic Self-Healing via Living Polymerization. 6.2.1 Preparation of Living PMMA and Its Composites with GMA-Loaded Microcapsules. 6.2.2 Characterization of Self-Healing Functionality. 6.3 Extrinsic Self-Healing via Free Radical Polymerization. 6.3.1 Microencapsulation of Styrene and BPO. 6.3.2 Self-Healing Performance of Epoxy Filled with Dual Capsules. 6.4 Concluding Remarks. References. 7 Intrinsic Self-Healing via Diels-Alder Reaction. 7.1 Molecular Design and Synthesis. 7.1.1 Synthesis and Characterization of DGFA. 7.1.2 Reversibility of DA Bonds and Crack Remendability of DGFA Based Polymer. 7.1.3 Synthesis and Characterization of FGE. 7.1.4 Reversibility of DA Bonds and Crack Remendability of FGE-Based Polymer. 7.2 Blends of DGFA and FGE. 7.2.1 Reversibility of DA Bonds. 7.2.2 Crack Remendability of Cured DGFA/FGE Blends. 7.3 Concluding Remarks. References. 8 Applications. 8.1 Coatings and Films. 8.2 Elastomers. 8.3 Smart Composites. 8.4 Tires. 8.5 Concluding Remarks. References. Appendix: Nomenclature. Index.
Note 400 annual accesses. UkHlHU
ISBN 9781118082874 (e-book)
Author Zhang, Ming Qiu.
Subject Polymeric composites.
Self-healing materials.
Alt author Rong, Min Zhi.

Subject Polymeric composites.
Self-healing materials.
Descript xii, 416 p., [8] p. of plates : ill. (some col.)
Contents Preface. 1 Basics of Self-Healing: State of the Art. 1.1 Background. 1.1.1 Adhesive Bonding for Healing Thermosetting Materials. 1.1.2 Fusion Bonding for Healing Thermoplastic Materials. 1.1.3 Bioinspired Self-Healing. 1.2 Intrinsic Self-Healing. 1.2.1 Self-Healing Based on Physical Interactions. 1.2.2 Self-Healing Based on Chemical Interactions. 1.2.3 Self-Healing Based on Supramolecular Interactions. 1.3 Extrinsic Self-Healing. 1.3.1 Self-Healing in Terms of Healant Loaded Pipelines. 1.3.2 Self-Healing in Terms of Healant Loaded Microcapsules. 1.4 Insights for Future Work. References. 2 Theoretical Consideration and Modeling. 2.1 Molecular Mechanisms. 2.1.1 Self-Healing Below Glass Transition Temperature. 2.1.2 Self-Healing Above Glass Transition Temperature. 2.2 Healing Modeling. 2.2.1 Percolation Modeling. 2.2.2 Continuum and Molecular-Level Modeling of Fatigue Crack Retardation. 2.2.3 Continuum Damage and Healing Mechanics. 2.2.4 Discrete Element Modeling and Numerical Study. 2.3 Design of Self-Healing Composites. 2.3.1 Entropy Driven Self-Assembly of Nanoparticles. 2.3.2 Optimization of Microvascular Networks. 2.4 Concluding Remarks. References. 3 Extrinsic Self-Healing via Addition Polymerization. 3.1 Design and Selection of Healing System. 3.2 Microencapsulation of Mercaptan and Epoxy by in situ Polymerization. 3.2.1 Microencapsulation of Mercaptan. 3.2.2 Microencapsulation of Epoxy. 3.3 Characterization of Self-Healing Functionality. 3.3.1 Self-Healing Epoxy Materials with Embedded Dual Encapsulated Healant: Healing of Crack Due to Monotonic Fracture. 3.3.2 Factors Related to Performance Improvement. 3.3.3 Self-Healing Epoxy Materials with Embedded Dual Encapsulated Healant: Healing of Fatigue Crack. 3.3.4 Self-Healing Epoxy/Glass Fabric Composites with Embedded Dual Encapsulated Healant: Healing of Impact Damage. 3.4 Concluding Remarks. References. 4 Extrinsic Self-Healing via Cationic Polymerization. 4.1 Microencapsulation of Epoxy by UV Irradiation-Induced Interfacial Copolymerization. 4.2 Encapsulation of Boron-Containing Curing Agent. 4.2.1 Loading Boron-Containing Curing Agent onto Porous Media. 4.2.2 Microencapsulation of Boron-Containing Curing Agent via Hollow Capsules Approach. 4.3 Characterization of Self-Healing Functionality. 4.3.1 Self-Healing Epoxy Materials with Embedded Epoxy-Loaded Microcapsules and (C2H5)2O.BF3-Loaded Sisal. 4.3.2 Self-Healing Epoxy Materials with Embedded Dual Encapsulated Healant. 4.4 Concluding Remarks. References. 5 Extrinsic Self-Healing via Anionic Polymerization. 5.1 Preparation of Epoxy-Loaded Microcapsules and Latent Hardener. 5.1.1 Microencapsulation of Epoxy by in situ Condensation. 5.1.2 Preparation of Imidazole Latent Hardener. 5.2 Self-Healing Epoxy Materials with Embedded Epoxy-Loaded Microcapsules and Latent Hardener. 5.3 Self-Healing Epoxy/Woven Glass Fabric Composites with Embedded Epoxy-Loaded Microcapsules and Latent Hardener: Healing of Interlaminar Failure. 5.4 Durability of Healing Ability. 5.5 Self-Healing Epoxy/Woven Glass Fabric Composites with Embedded Epoxy-Loaded Microcapsules and Latent Hardener: Healing of Impact Damage. 5.6 Concluding Remarks. References. 6 Extrinsic Self-Healing via Miscellaneous Reactions. 6.1 Extrinsic Self-Healing via Nucleophilic Addition and Ring-Opening Reactions. 6.1.1 Microencapsulation of GMA by in situ Polymerization. 6.1.2 Self-Healing Epoxy Materials with Embedded Single-Component Healant. 6.2 Extrinsic Self-Healing via Living Polymerization. 6.2.1 Preparation of Living PMMA and Its Composites with GMA-Loaded Microcapsules. 6.2.2 Characterization of Self-Healing Functionality. 6.3 Extrinsic Self-Healing via Free Radical Polymerization. 6.3.1 Microencapsulation of Styrene and BPO. 6.3.2 Self-Healing Performance of Epoxy Filled with Dual Capsules. 6.4 Concluding Remarks. References. 7 Intrinsic Self-Healing via Diels-Alder Reaction. 7.1 Molecular Design and Synthesis. 7.1.1 Synthesis and Characterization of DGFA. 7.1.2 Reversibility of DA Bonds and Crack Remendability of DGFA Based Polymer. 7.1.3 Synthesis and Characterization of FGE. 7.1.4 Reversibility of DA Bonds and Crack Remendability of FGE-Based Polymer. 7.2 Blends of DGFA and FGE. 7.2.1 Reversibility of DA Bonds. 7.2.2 Crack Remendability of Cured DGFA/FGE Blends. 7.3 Concluding Remarks. References. 8 Applications. 8.1 Coatings and Films. 8.2 Elastomers. 8.3 Smart Composites. 8.4 Tires. 8.5 Concluding Remarks. References. Appendix: Nomenclature. Index.
Note 400 annual accesses. UkHlHU
Alt author Rong, Min Zhi.
ISBN 9781118082874 (e-book)

Links and services for this item: