Start Over Please hold this item Export MARC Display Return To Browse
 
     
Limit search to available items
Record: Previous Record Next Record
Author Simon, Steven H.
Title The Oxford solid state basics / Steven H. Simon.
Alternative Title Solid state basics
Publisher Oxford Oxford University Press, 2013.
Copyright date ©2013.
Edition First edition.


LOCATION SHELVED AT LOAN TYPE STATUS
 BJL Reading Room 1st floor HDC  QC 176 S5  4 WEEK LOAN  AVAILABLE

Descript xiii, 290 pages : illustrations ; 26 cm.
Content text txt
Media unmediated n
Carrier volume nc
Edition First edition.
Contents Machine generated contents note: 1.About Condensed Matter Physics -- 1.1.What Is Condensed Matter Physics -- 1.2.Why Do We Study Condensed Matter Physics? -- 1.3.Why Solid State Physics? -- I.Physics of Solids without Considering Microscopic Structure: The Early Days of Solid State -- 2.Specific Heat of Solids: Boltzmann, Einstein, and Debye -- 2.1.Einstein's Calculation -- 2.2.Debye's Calculation -- 2.2.1.Periodic (Born-von Karman) Boundary Conditions -- 2.2.2.Debye's Calculation Following Planck -- 2.2.3.Debye's "Interpolation" -- 2.2.4.Some Shortcomings of the Debye Theory -- 2.3.Appendix to this Chapter: (Si(B(4) -- Exercises -- 3.Electrons in Metals: Drude Theory -- 3.1.Electrons in Fields -- 3.1.1.Electrons in an Electric Field -- 3.1.2.Electrons in Electric and Magnetic Fields -- 3.2.Thermal Transport -- Exercises -- 4.More Electrons in Metals: Sommerfeld (Free Electron) Theory -- 4.1.Basic Fermi-Dirac Statistics -- 4.2.Electronic Heat Capacity --
Contents note continued: 4.3.Magnetic Spin Susceptibility (Pauli Paramagnetism) -- 4.4.Why Drude Theory Works So Well -- 4.5.Shortcomings of the Free Electron Model -- Exercises -- II.Structure of Materials -- 5.The Periodic Table -- 5.1.Chemistry, Atoms, and the Schroedinger Equation -- 5.2.Structure of the Periodic Table -- 5.3.Periodic Trends -- 5.3.1.Effective Nuclear Charge -- Exercises -- 6.What Holds Solids Together: Chemical Bonding -- 6.1.Ionic Bonds -- 6.2.Covalent Bond -- 6.2.1.Particle in a Box Picture -- 6.2.2.Molecular Orbital or Tight Binding Theory -- 6.3.Van der Waals, Fluctuating Dipole Forces, or Molecular Bonding -- 6.4.Metallic Bonding -- 6.5.Hydrogen Bonds -- Exercises -- 7.Types of Matter -- III.Toy Models of Solids in One Dimension -- 8.One-Dimensional Model of Compressibility, Sound, and Thermal Expansion -- Exercises -- 9.Vibrations of a One-Dimensional Monatomic Chain -- 9.1.First Exposure to the Reciprocal Lattice --
Contents note continued: 9.2.Properties of the Dispersion of the One-Dimensional Chain -- 9.3.Quantum Modes: Phonons -- 9.4.Crystal Momentum -- Exercises -- 10.Vibrations of a One-Dimensional Diatomic Chain -- 10.1.Diatomic Crystal Structure: Some Useful Definitions -- 10.2.Normal Modes of the Diatomic Solid -- Exercises -- 11.Tight Binding Chain (Interlude and Preview) -- 11.1.Tight Binding Model in One Dimension -- 11.2.Solution of the Tight Binding Chain -- 11.3.Introduction to Electrons Filling Bands -- 11.4.Multiple Bands -- Exercises -- IV.Geometry of Solids -- 12.Crystal Structure -- 12.1.Lattices and Unit Cells -- 12.2.Lattices in Three Dimensions -- 12.2.1.The Body-Centered Cubic (bcc) Lattice -- 12.2.2.The Face-Centered Cubic (fcc) Lattice -- 12.2.3.Sphere Packing -- 12.2.4.Other Lattices in Three Dimensions -- 12.2.5.Some Real Crystals -- Exercises -- 13.Reciprocal Lattice, Brillouin Zone, Waves in Crystals -- 13.1.The Reciprocal Lattice in Three Dimensions --
Contents note continued: 13.1.1.Review of One Dimension -- 13.1.2.Reciprocal Lattice Definition -- 13.1.3.The Reciprocal Lattice as a Fourier Transform -- 13.1.4.Reciprocal Lattice Points as Families of Lattice Planes -- 13.1.5.Lattice Planes and Miller Indices -- 13.2.Brillouin Zones -- 13.2.1.Review of One-Dimensional Dispersions and Brillouin Zones -- 13.2.2.General Brillouin Zone Construction -- 13.3.Electronic and Vibrational Waves in Crystals in Three Dimensions -- Exercises -- V.Neutron and X-Ray Diffraction -- 14.Wave Scattering by Crystals -- 14.1.The Laue and Bragg Conditions -- 14.1.1.Fermi's Golden Rule Approach -- 14.1.2.Diffraction Approach -- 14.1.3.Equivalence of Laue and Bragg conditions -- 14.2.Scattering Amplitudes -- 14.2.1.Simple Example -- 14.2.2.Systematic Absences and More Examples -- 14.2.3.Geometric Interpretation of Selection Rules -- 14.3.Methods of Scattering Experiments -- 14.3.1.Advanced Methods -- 14.3.2.Powder Diffraction --
Contents note continued: 14.4.Still More About Scattering -- 14.4.1.Scattering in Liquids and Amorphous Solids -- 14.4.2.Variant: Inelastic Scattering -- 14.4.3.Experimental Apparatus -- Exercises -- VI.Electrons in Solids -- 15.Electrons in a Periodic Potential -- 15.1.Nearly Free Electron Model -- 15.1.1.Degenerate Perturbation Theory -- 15.2.Bloch's Theorem -- Exercises -- 16.Insulator, Semiconductor, or Metal -- 16.1.Energy Bands in One Dimension -- 16.2.Energy Bands in Two and Three Dimensions -- 16.3.Tight Binding -- 16.4.Failures of the Band-Structure Picture of Metals and Insulators -- 16.5.Band Structure and Optical Properties -- 16.5.1.Optical Properties of Insulators and Semiconductors -- 16.5.2.Direct and Indirect Transitions -- 16.5.3.Optical Properties of Metals -- 16.5.4.Optical Effects of Impurities -- Exercises -- 17.Semiconductor Physics -- 17.1.Electrons and Holes -- 17.1.1.Drude Transport: Redux -- 17.2.Adding Electrons or Holes with Impurities: Doping --
Contents note continued: 17.2.1.Impurity States -- 17.3.Statistical Mechanics of Semiconductors -- Exercises -- 18.Semiconductor Devices -- 18.1.Band Structure Engineering -- 18.1.1.Designing Band Gaps -- 18.1.2.Non-Homogeneous Band Gaps -- 18.2.p-n Junction -- 18.3.The Transistor -- Exercises -- VII.Magnetism and Mean Field Theories -- 19.Magnetic Properties of Atoms: Para- and Dia-Magnetism -- 19.1.Basic Definitions of Types of Magnetism -- 19.2.Atomic Physics: Hund's Rules -- 19.2.1.Why Moments Align -- 19.3.Coupling of Electrons in Atoms to an External Field -- 19.4.Free Spin (Curie or Langevin) Paramagnetism -- 19.5.Larmor Diamagnetism -- 19.6.Atoms in Solids -- 19.6.1.Pauli Paramagnetism in Metals -- 19.6.2.Diamagnetism in Solids -- 19.6.3.Curie Paramagnetism in Solids -- Exercises -- 20.Spontaneous Magnetic Order: Ferro-, Antiferro-, and Ferri-Magnetism -- 20.1.(Spontaneous) Magnetic Order -- 20.1.1.Ferromagnets -- 20.1.2.Antiferromagnets -- 20.1.3.Ferrimagnets --
Contents note continued: 20.2.Breaking Symmetry -- 20.2.1.Ising Model -- Exercises -- 21.Domains and Hysteresis -- 21.1.Macroscopic Effects in Ferromagnets: Domains -- 21.1.1.Domain Wall Structure and the Bloch/Neel Wall -- 21.2.Hysteresis in Ferromagnets -- 21.2.1.Disorder Pinning -- 21.2.2.Single-Domain Crystallites -- 21.2.3.Domain Pinning and Hysteresis -- Exercises -- 22.Mean Field Theory -- 22.1.Mean Field Equations for the Ferromagnetic Ising Model -- 22.2.Solution of Self-Consistency Equation -- 22.2.1.Paramagnetic Susceptibility -- 22.2.2.Further Thoughts -- Exercises -- 23.Magnetism from Interactions: The Hubbard Model -- 23.1.Itinerant Ferromagnetism -- 23.1.1.Hubbard Ferromagnetism Mean Field Theory -- 23.1.2.Stoner Criterion -- 23.2.Mott Antiferromagnetism -- 23.3.Appendix: Hubbard Model for the Hydrogen Molecule -- Exercises -- A.Sample Exam and Solutions -- B.List of Other Good Books -- Indices -- Index of People.
ISBN 9780199680771 (paperback)
0199680779 (paperback)
Click on the terms below to find similar items in the catalogue
Author Simon, Steven H.
Subject Solid state physics.
Alternative Title Solid state basics
Descript xiii, 290 pages : illustrations ; 26 cm.
Content text txt
Media unmediated n
Carrier volume nc
Edition First edition.
Contents Machine generated contents note: 1.About Condensed Matter Physics -- 1.1.What Is Condensed Matter Physics -- 1.2.Why Do We Study Condensed Matter Physics? -- 1.3.Why Solid State Physics? -- I.Physics of Solids without Considering Microscopic Structure: The Early Days of Solid State -- 2.Specific Heat of Solids: Boltzmann, Einstein, and Debye -- 2.1.Einstein's Calculation -- 2.2.Debye's Calculation -- 2.2.1.Periodic (Born-von Karman) Boundary Conditions -- 2.2.2.Debye's Calculation Following Planck -- 2.2.3.Debye's "Interpolation" -- 2.2.4.Some Shortcomings of the Debye Theory -- 2.3.Appendix to this Chapter: (Si(B(4) -- Exercises -- 3.Electrons in Metals: Drude Theory -- 3.1.Electrons in Fields -- 3.1.1.Electrons in an Electric Field -- 3.1.2.Electrons in Electric and Magnetic Fields -- 3.2.Thermal Transport -- Exercises -- 4.More Electrons in Metals: Sommerfeld (Free Electron) Theory -- 4.1.Basic Fermi-Dirac Statistics -- 4.2.Electronic Heat Capacity --
Contents note continued: 4.3.Magnetic Spin Susceptibility (Pauli Paramagnetism) -- 4.4.Why Drude Theory Works So Well -- 4.5.Shortcomings of the Free Electron Model -- Exercises -- II.Structure of Materials -- 5.The Periodic Table -- 5.1.Chemistry, Atoms, and the Schroedinger Equation -- 5.2.Structure of the Periodic Table -- 5.3.Periodic Trends -- 5.3.1.Effective Nuclear Charge -- Exercises -- 6.What Holds Solids Together: Chemical Bonding -- 6.1.Ionic Bonds -- 6.2.Covalent Bond -- 6.2.1.Particle in a Box Picture -- 6.2.2.Molecular Orbital or Tight Binding Theory -- 6.3.Van der Waals, Fluctuating Dipole Forces, or Molecular Bonding -- 6.4.Metallic Bonding -- 6.5.Hydrogen Bonds -- Exercises -- 7.Types of Matter -- III.Toy Models of Solids in One Dimension -- 8.One-Dimensional Model of Compressibility, Sound, and Thermal Expansion -- Exercises -- 9.Vibrations of a One-Dimensional Monatomic Chain -- 9.1.First Exposure to the Reciprocal Lattice --
Contents note continued: 9.2.Properties of the Dispersion of the One-Dimensional Chain -- 9.3.Quantum Modes: Phonons -- 9.4.Crystal Momentum -- Exercises -- 10.Vibrations of a One-Dimensional Diatomic Chain -- 10.1.Diatomic Crystal Structure: Some Useful Definitions -- 10.2.Normal Modes of the Diatomic Solid -- Exercises -- 11.Tight Binding Chain (Interlude and Preview) -- 11.1.Tight Binding Model in One Dimension -- 11.2.Solution of the Tight Binding Chain -- 11.3.Introduction to Electrons Filling Bands -- 11.4.Multiple Bands -- Exercises -- IV.Geometry of Solids -- 12.Crystal Structure -- 12.1.Lattices and Unit Cells -- 12.2.Lattices in Three Dimensions -- 12.2.1.The Body-Centered Cubic (bcc) Lattice -- 12.2.2.The Face-Centered Cubic (fcc) Lattice -- 12.2.3.Sphere Packing -- 12.2.4.Other Lattices in Three Dimensions -- 12.2.5.Some Real Crystals -- Exercises -- 13.Reciprocal Lattice, Brillouin Zone, Waves in Crystals -- 13.1.The Reciprocal Lattice in Three Dimensions --
Contents note continued: 13.1.1.Review of One Dimension -- 13.1.2.Reciprocal Lattice Definition -- 13.1.3.The Reciprocal Lattice as a Fourier Transform -- 13.1.4.Reciprocal Lattice Points as Families of Lattice Planes -- 13.1.5.Lattice Planes and Miller Indices -- 13.2.Brillouin Zones -- 13.2.1.Review of One-Dimensional Dispersions and Brillouin Zones -- 13.2.2.General Brillouin Zone Construction -- 13.3.Electronic and Vibrational Waves in Crystals in Three Dimensions -- Exercises -- V.Neutron and X-Ray Diffraction -- 14.Wave Scattering by Crystals -- 14.1.The Laue and Bragg Conditions -- 14.1.1.Fermi's Golden Rule Approach -- 14.1.2.Diffraction Approach -- 14.1.3.Equivalence of Laue and Bragg conditions -- 14.2.Scattering Amplitudes -- 14.2.1.Simple Example -- 14.2.2.Systematic Absences and More Examples -- 14.2.3.Geometric Interpretation of Selection Rules -- 14.3.Methods of Scattering Experiments -- 14.3.1.Advanced Methods -- 14.3.2.Powder Diffraction --
Contents note continued: 14.4.Still More About Scattering -- 14.4.1.Scattering in Liquids and Amorphous Solids -- 14.4.2.Variant: Inelastic Scattering -- 14.4.3.Experimental Apparatus -- Exercises -- VI.Electrons in Solids -- 15.Electrons in a Periodic Potential -- 15.1.Nearly Free Electron Model -- 15.1.1.Degenerate Perturbation Theory -- 15.2.Bloch's Theorem -- Exercises -- 16.Insulator, Semiconductor, or Metal -- 16.1.Energy Bands in One Dimension -- 16.2.Energy Bands in Two and Three Dimensions -- 16.3.Tight Binding -- 16.4.Failures of the Band-Structure Picture of Metals and Insulators -- 16.5.Band Structure and Optical Properties -- 16.5.1.Optical Properties of Insulators and Semiconductors -- 16.5.2.Direct and Indirect Transitions -- 16.5.3.Optical Properties of Metals -- 16.5.4.Optical Effects of Impurities -- Exercises -- 17.Semiconductor Physics -- 17.1.Electrons and Holes -- 17.1.1.Drude Transport: Redux -- 17.2.Adding Electrons or Holes with Impurities: Doping --
Contents note continued: 17.2.1.Impurity States -- 17.3.Statistical Mechanics of Semiconductors -- Exercises -- 18.Semiconductor Devices -- 18.1.Band Structure Engineering -- 18.1.1.Designing Band Gaps -- 18.1.2.Non-Homogeneous Band Gaps -- 18.2.p-n Junction -- 18.3.The Transistor -- Exercises -- VII.Magnetism and Mean Field Theories -- 19.Magnetic Properties of Atoms: Para- and Dia-Magnetism -- 19.1.Basic Definitions of Types of Magnetism -- 19.2.Atomic Physics: Hund's Rules -- 19.2.1.Why Moments Align -- 19.3.Coupling of Electrons in Atoms to an External Field -- 19.4.Free Spin (Curie or Langevin) Paramagnetism -- 19.5.Larmor Diamagnetism -- 19.6.Atoms in Solids -- 19.6.1.Pauli Paramagnetism in Metals -- 19.6.2.Diamagnetism in Solids -- 19.6.3.Curie Paramagnetism in Solids -- Exercises -- 20.Spontaneous Magnetic Order: Ferro-, Antiferro-, and Ferri-Magnetism -- 20.1.(Spontaneous) Magnetic Order -- 20.1.1.Ferromagnets -- 20.1.2.Antiferromagnets -- 20.1.3.Ferrimagnets --
Contents note continued: 20.2.Breaking Symmetry -- 20.2.1.Ising Model -- Exercises -- 21.Domains and Hysteresis -- 21.1.Macroscopic Effects in Ferromagnets: Domains -- 21.1.1.Domain Wall Structure and the Bloch/Neel Wall -- 21.2.Hysteresis in Ferromagnets -- 21.2.1.Disorder Pinning -- 21.2.2.Single-Domain Crystallites -- 21.2.3.Domain Pinning and Hysteresis -- Exercises -- 22.Mean Field Theory -- 22.1.Mean Field Equations for the Ferromagnetic Ising Model -- 22.2.Solution of Self-Consistency Equation -- 22.2.1.Paramagnetic Susceptibility -- 22.2.2.Further Thoughts -- Exercises -- 23.Magnetism from Interactions: The Hubbard Model -- 23.1.Itinerant Ferromagnetism -- 23.1.1.Hubbard Ferromagnetism Mean Field Theory -- 23.1.2.Stoner Criterion -- 23.2.Mott Antiferromagnetism -- 23.3.Appendix: Hubbard Model for the Hydrogen Molecule -- Exercises -- A.Sample Exam and Solutions -- B.List of Other Good Books -- Indices -- Index of People.
ISBN 9780199680771 (paperback)
0199680779 (paperback)
Author Simon, Steven H.
Subject Solid state physics.
Alternative Title Solid state basics
LOCATION SHELVED AT LOAN TYPE STATUS
 BJL Reading Room 1st floor HDC  QC 176 S5  4 WEEK LOAN  AVAILABLE

Subject Solid state physics.
Descript xiii, 290 pages : illustrations ; 26 cm.
Content text txt
Media unmediated n
Carrier volume nc
Contents Machine generated contents note: 1.About Condensed Matter Physics -- 1.1.What Is Condensed Matter Physics -- 1.2.Why Do We Study Condensed Matter Physics? -- 1.3.Why Solid State Physics? -- I.Physics of Solids without Considering Microscopic Structure: The Early Days of Solid State -- 2.Specific Heat of Solids: Boltzmann, Einstein, and Debye -- 2.1.Einstein's Calculation -- 2.2.Debye's Calculation -- 2.2.1.Periodic (Born-von Karman) Boundary Conditions -- 2.2.2.Debye's Calculation Following Planck -- 2.2.3.Debye's "Interpolation" -- 2.2.4.Some Shortcomings of the Debye Theory -- 2.3.Appendix to this Chapter: (Si(B(4) -- Exercises -- 3.Electrons in Metals: Drude Theory -- 3.1.Electrons in Fields -- 3.1.1.Electrons in an Electric Field -- 3.1.2.Electrons in Electric and Magnetic Fields -- 3.2.Thermal Transport -- Exercises -- 4.More Electrons in Metals: Sommerfeld (Free Electron) Theory -- 4.1.Basic Fermi-Dirac Statistics -- 4.2.Electronic Heat Capacity --
Contents note continued: 4.3.Magnetic Spin Susceptibility (Pauli Paramagnetism) -- 4.4.Why Drude Theory Works So Well -- 4.5.Shortcomings of the Free Electron Model -- Exercises -- II.Structure of Materials -- 5.The Periodic Table -- 5.1.Chemistry, Atoms, and the Schroedinger Equation -- 5.2.Structure of the Periodic Table -- 5.3.Periodic Trends -- 5.3.1.Effective Nuclear Charge -- Exercises -- 6.What Holds Solids Together: Chemical Bonding -- 6.1.Ionic Bonds -- 6.2.Covalent Bond -- 6.2.1.Particle in a Box Picture -- 6.2.2.Molecular Orbital or Tight Binding Theory -- 6.3.Van der Waals, Fluctuating Dipole Forces, or Molecular Bonding -- 6.4.Metallic Bonding -- 6.5.Hydrogen Bonds -- Exercises -- 7.Types of Matter -- III.Toy Models of Solids in One Dimension -- 8.One-Dimensional Model of Compressibility, Sound, and Thermal Expansion -- Exercises -- 9.Vibrations of a One-Dimensional Monatomic Chain -- 9.1.First Exposure to the Reciprocal Lattice --
Contents note continued: 9.2.Properties of the Dispersion of the One-Dimensional Chain -- 9.3.Quantum Modes: Phonons -- 9.4.Crystal Momentum -- Exercises -- 10.Vibrations of a One-Dimensional Diatomic Chain -- 10.1.Diatomic Crystal Structure: Some Useful Definitions -- 10.2.Normal Modes of the Diatomic Solid -- Exercises -- 11.Tight Binding Chain (Interlude and Preview) -- 11.1.Tight Binding Model in One Dimension -- 11.2.Solution of the Tight Binding Chain -- 11.3.Introduction to Electrons Filling Bands -- 11.4.Multiple Bands -- Exercises -- IV.Geometry of Solids -- 12.Crystal Structure -- 12.1.Lattices and Unit Cells -- 12.2.Lattices in Three Dimensions -- 12.2.1.The Body-Centered Cubic (bcc) Lattice -- 12.2.2.The Face-Centered Cubic (fcc) Lattice -- 12.2.3.Sphere Packing -- 12.2.4.Other Lattices in Three Dimensions -- 12.2.5.Some Real Crystals -- Exercises -- 13.Reciprocal Lattice, Brillouin Zone, Waves in Crystals -- 13.1.The Reciprocal Lattice in Three Dimensions --
Contents note continued: 13.1.1.Review of One Dimension -- 13.1.2.Reciprocal Lattice Definition -- 13.1.3.The Reciprocal Lattice as a Fourier Transform -- 13.1.4.Reciprocal Lattice Points as Families of Lattice Planes -- 13.1.5.Lattice Planes and Miller Indices -- 13.2.Brillouin Zones -- 13.2.1.Review of One-Dimensional Dispersions and Brillouin Zones -- 13.2.2.General Brillouin Zone Construction -- 13.3.Electronic and Vibrational Waves in Crystals in Three Dimensions -- Exercises -- V.Neutron and X-Ray Diffraction -- 14.Wave Scattering by Crystals -- 14.1.The Laue and Bragg Conditions -- 14.1.1.Fermi's Golden Rule Approach -- 14.1.2.Diffraction Approach -- 14.1.3.Equivalence of Laue and Bragg conditions -- 14.2.Scattering Amplitudes -- 14.2.1.Simple Example -- 14.2.2.Systematic Absences and More Examples -- 14.2.3.Geometric Interpretation of Selection Rules -- 14.3.Methods of Scattering Experiments -- 14.3.1.Advanced Methods -- 14.3.2.Powder Diffraction --
Contents note continued: 14.4.Still More About Scattering -- 14.4.1.Scattering in Liquids and Amorphous Solids -- 14.4.2.Variant: Inelastic Scattering -- 14.4.3.Experimental Apparatus -- Exercises -- VI.Electrons in Solids -- 15.Electrons in a Periodic Potential -- 15.1.Nearly Free Electron Model -- 15.1.1.Degenerate Perturbation Theory -- 15.2.Bloch's Theorem -- Exercises -- 16.Insulator, Semiconductor, or Metal -- 16.1.Energy Bands in One Dimension -- 16.2.Energy Bands in Two and Three Dimensions -- 16.3.Tight Binding -- 16.4.Failures of the Band-Structure Picture of Metals and Insulators -- 16.5.Band Structure and Optical Properties -- 16.5.1.Optical Properties of Insulators and Semiconductors -- 16.5.2.Direct and Indirect Transitions -- 16.5.3.Optical Properties of Metals -- 16.5.4.Optical Effects of Impurities -- Exercises -- 17.Semiconductor Physics -- 17.1.Electrons and Holes -- 17.1.1.Drude Transport: Redux -- 17.2.Adding Electrons or Holes with Impurities: Doping --
Contents note continued: 17.2.1.Impurity States -- 17.3.Statistical Mechanics of Semiconductors -- Exercises -- 18.Semiconductor Devices -- 18.1.Band Structure Engineering -- 18.1.1.Designing Band Gaps -- 18.1.2.Non-Homogeneous Band Gaps -- 18.2.p-n Junction -- 18.3.The Transistor -- Exercises -- VII.Magnetism and Mean Field Theories -- 19.Magnetic Properties of Atoms: Para- and Dia-Magnetism -- 19.1.Basic Definitions of Types of Magnetism -- 19.2.Atomic Physics: Hund's Rules -- 19.2.1.Why Moments Align -- 19.3.Coupling of Electrons in Atoms to an External Field -- 19.4.Free Spin (Curie or Langevin) Paramagnetism -- 19.5.Larmor Diamagnetism -- 19.6.Atoms in Solids -- 19.6.1.Pauli Paramagnetism in Metals -- 19.6.2.Diamagnetism in Solids -- 19.6.3.Curie Paramagnetism in Solids -- Exercises -- 20.Spontaneous Magnetic Order: Ferro-, Antiferro-, and Ferri-Magnetism -- 20.1.(Spontaneous) Magnetic Order -- 20.1.1.Ferromagnets -- 20.1.2.Antiferromagnets -- 20.1.3.Ferrimagnets --
Contents note continued: 20.2.Breaking Symmetry -- 20.2.1.Ising Model -- Exercises -- 21.Domains and Hysteresis -- 21.1.Macroscopic Effects in Ferromagnets: Domains -- 21.1.1.Domain Wall Structure and the Bloch/Neel Wall -- 21.2.Hysteresis in Ferromagnets -- 21.2.1.Disorder Pinning -- 21.2.2.Single-Domain Crystallites -- 21.2.3.Domain Pinning and Hysteresis -- Exercises -- 22.Mean Field Theory -- 22.1.Mean Field Equations for the Ferromagnetic Ising Model -- 22.2.Solution of Self-Consistency Equation -- 22.2.1.Paramagnetic Susceptibility -- 22.2.2.Further Thoughts -- Exercises -- 23.Magnetism from Interactions: The Hubbard Model -- 23.1.Itinerant Ferromagnetism -- 23.1.1.Hubbard Ferromagnetism Mean Field Theory -- 23.1.2.Stoner Criterion -- 23.2.Mott Antiferromagnetism -- 23.3.Appendix: Hubbard Model for the Hydrogen Molecule -- Exercises -- A.Sample Exam and Solutions -- B.List of Other Good Books -- Indices -- Index of People.
ISBN 9780199680771 (paperback)
0199680779 (paperback)

Links and services for this item: