Start Over Please hold this item Export MARC Display Return To Browse
 
     
Limit search to available items
Record: Previous Record Next Record
Author Willmott, Philip.
Title An introduction to synchrotron radiation : techniques and applications.
Publication Info Hoboken : Wiley, 2011.
Edition 1st ed.



Descript 1 online resource (370 p.)
Edition 1st ed.
Note Description based upon print version of record.
Contents An Introduction to Synchrotron Radiation -- Contents -- Preface -- Acknowledgements -- 1. Introduction -- 1.1 A Potted History of X-rays -- 1.2 Synchrotron Sources Over the Last 50 Years -- References -- 2. The Interaction of X-rays with Matter -- 2.1 Introduction -- 2.2 The Electromagnetic Spectrum -- 2.3 Thomson Scattering -- 2.4 Compton Scattering -- 2.5 Atomic Scattering Factors -- 2.5.1 Scattering From a Cloud of Free Electrons -- 2.5.2 Correction Terms for the Atomic Scattering Factor -- 2.6 The Refractive Index, Reflection and Absorption -- 2.6.1 The Refractive Index
2.6.2 Refraction and Reflection -- 2.6.3 Absorption -- 2.7 X-ray Fluorescence and Auger Emission -- 2.7.1 X-ray Fluorescence -- 2.7.2 Auger Emission -- 2.7.3 Fluorescence or Auger? -- 2.8 Concluding Remarks -- References -- 3. Synchrotron Physics -- 3.1 Introduction -- 3.2 Overview -- 3.3 Radiation From Relativistic Electrons -- 3.3.1 Magnetic Deflection Fields -- 3.3.2 Radiated Power Loss in Synchrotrons -- 3.4 Radio Frequency Power Supply and Bunching -- 3.5 Photon Beam Properties -- 3.5.1 Flux and Brilliance -- 3.5.2 Emittance -- 3.5.3 Coherence -- 3.5.4 Polarization of Synchrotron Radiation
3.6 Bending Magnets and Superbends -- 3.7 Insertion Devices -- 3.7.1 Wigglers -- 3.7.2 Worked Example: The SLS Materials Science Beamline Wiggler -- 3.7.3 Undulators -- 3.8 Future Sources of Synchrotron Light -- 3.8.1 The Energy Recovery Linac -- 3.8.2 The Free-Electron Laser -- 3.8.3 Tabletop Synchrotrons -- 3.9 Concluding Remarks -- References -- 4. Beamlines -- 4.1 Introduction -- 4.2 Front End -- 4.2.1 Beam-Position Monitors -- 4.2.2 Primary Aperture and Front-End Slits -- 4.2.3 Low-Energy Filters -- 4.3 Primary Optics -- 4.3.1 X-ray Mirrors
4.3.2 Mirror Focal Lengths - The Coddington Equations -- 4.3.3 Monochromators -- 4.3.4 Focusing Geometry -- 4.4 Microfocus and Nanofocus Optics -- 4.4.1 Lens Types -- 4.5 Beam Intensity Monitors -- 4.6 Detectors -- 4.6.1 Photographic Plates -- 4.6.2 Scintillator Detectors -- 4.6.3 The Point-Spread Function -- 4.6.4 Crystal Analysers -- 4.6.5 Image Plates and Charge-Coupled Devices -- 4.6.6 Pixel and Microstrip Detectors -- 4.6.7 Energy-Dispersive Detectors -- 4.7 Time-Resolved Experiments -- 4.7.1 Avalanche Photodiodes -- 4.7.2 Streak Cameras -- 4.8 Concluding Remarks -- References
5. Scattering Techniques -- 5.1 Introduction -- 5.2 Diffraction at Synchrotron Sources -- 5.3 Description of Crystals -- 5.3.1 Lattices and Bases -- 5.3.2 Crystal Planes -- 5.3.3 Labelling Crystallographic Planes and Axes -- 5.4 Basic Tenets of X-ray Diffraction -- 5.4.1 Introduction -- 5.4.2 The Bragg Law and the Reciprocal Lattice -- 5.4.3 The Influence of the Basis -- 5.4.4 Kinematical and Dynamical Diffraction -- 5.5 Diffraction and the Convolution Theorem -- 5.5.1 The Convolution Theorem -- 5.5.2 Understanding the Structure Factor -- 5.6 The Phase Problem and Anomalous Diffraction
5.6.1 Introduction
Note 200 annual accesses. UkHlHU
ISBN 9781119972860
Click on the terms below to find similar items in the catalogue
Author Willmott, Philip.
Subject Synchrotron radiation.
X-ray optics.
Descript 1 online resource (370 p.)
Edition 1st ed.
Note Description based upon print version of record.
Contents An Introduction to Synchrotron Radiation -- Contents -- Preface -- Acknowledgements -- 1. Introduction -- 1.1 A Potted History of X-rays -- 1.2 Synchrotron Sources Over the Last 50 Years -- References -- 2. The Interaction of X-rays with Matter -- 2.1 Introduction -- 2.2 The Electromagnetic Spectrum -- 2.3 Thomson Scattering -- 2.4 Compton Scattering -- 2.5 Atomic Scattering Factors -- 2.5.1 Scattering From a Cloud of Free Electrons -- 2.5.2 Correction Terms for the Atomic Scattering Factor -- 2.6 The Refractive Index, Reflection and Absorption -- 2.6.1 The Refractive Index
2.6.2 Refraction and Reflection -- 2.6.3 Absorption -- 2.7 X-ray Fluorescence and Auger Emission -- 2.7.1 X-ray Fluorescence -- 2.7.2 Auger Emission -- 2.7.3 Fluorescence or Auger? -- 2.8 Concluding Remarks -- References -- 3. Synchrotron Physics -- 3.1 Introduction -- 3.2 Overview -- 3.3 Radiation From Relativistic Electrons -- 3.3.1 Magnetic Deflection Fields -- 3.3.2 Radiated Power Loss in Synchrotrons -- 3.4 Radio Frequency Power Supply and Bunching -- 3.5 Photon Beam Properties -- 3.5.1 Flux and Brilliance -- 3.5.2 Emittance -- 3.5.3 Coherence -- 3.5.4 Polarization of Synchrotron Radiation
3.6 Bending Magnets and Superbends -- 3.7 Insertion Devices -- 3.7.1 Wigglers -- 3.7.2 Worked Example: The SLS Materials Science Beamline Wiggler -- 3.7.3 Undulators -- 3.8 Future Sources of Synchrotron Light -- 3.8.1 The Energy Recovery Linac -- 3.8.2 The Free-Electron Laser -- 3.8.3 Tabletop Synchrotrons -- 3.9 Concluding Remarks -- References -- 4. Beamlines -- 4.1 Introduction -- 4.2 Front End -- 4.2.1 Beam-Position Monitors -- 4.2.2 Primary Aperture and Front-End Slits -- 4.2.3 Low-Energy Filters -- 4.3 Primary Optics -- 4.3.1 X-ray Mirrors
4.3.2 Mirror Focal Lengths - The Coddington Equations -- 4.3.3 Monochromators -- 4.3.4 Focusing Geometry -- 4.4 Microfocus and Nanofocus Optics -- 4.4.1 Lens Types -- 4.5 Beam Intensity Monitors -- 4.6 Detectors -- 4.6.1 Photographic Plates -- 4.6.2 Scintillator Detectors -- 4.6.3 The Point-Spread Function -- 4.6.4 Crystal Analysers -- 4.6.5 Image Plates and Charge-Coupled Devices -- 4.6.6 Pixel and Microstrip Detectors -- 4.6.7 Energy-Dispersive Detectors -- 4.7 Time-Resolved Experiments -- 4.7.1 Avalanche Photodiodes -- 4.7.2 Streak Cameras -- 4.8 Concluding Remarks -- References
5. Scattering Techniques -- 5.1 Introduction -- 5.2 Diffraction at Synchrotron Sources -- 5.3 Description of Crystals -- 5.3.1 Lattices and Bases -- 5.3.2 Crystal Planes -- 5.3.3 Labelling Crystallographic Planes and Axes -- 5.4 Basic Tenets of X-ray Diffraction -- 5.4.1 Introduction -- 5.4.2 The Bragg Law and the Reciprocal Lattice -- 5.4.3 The Influence of the Basis -- 5.4.4 Kinematical and Dynamical Diffraction -- 5.5 Diffraction and the Convolution Theorem -- 5.5.1 The Convolution Theorem -- 5.5.2 Understanding the Structure Factor -- 5.6 The Phase Problem and Anomalous Diffraction
5.6.1 Introduction
Note 200 annual accesses. UkHlHU
ISBN 9781119972860
Author Willmott, Philip.
Subject Synchrotron radiation.
X-ray optics.

Subject Synchrotron radiation.
X-ray optics.
Descript 1 online resource (370 p.)
Note Description based upon print version of record.
Contents An Introduction to Synchrotron Radiation -- Contents -- Preface -- Acknowledgements -- 1. Introduction -- 1.1 A Potted History of X-rays -- 1.2 Synchrotron Sources Over the Last 50 Years -- References -- 2. The Interaction of X-rays with Matter -- 2.1 Introduction -- 2.2 The Electromagnetic Spectrum -- 2.3 Thomson Scattering -- 2.4 Compton Scattering -- 2.5 Atomic Scattering Factors -- 2.5.1 Scattering From a Cloud of Free Electrons -- 2.5.2 Correction Terms for the Atomic Scattering Factor -- 2.6 The Refractive Index, Reflection and Absorption -- 2.6.1 The Refractive Index
2.6.2 Refraction and Reflection -- 2.6.3 Absorption -- 2.7 X-ray Fluorescence and Auger Emission -- 2.7.1 X-ray Fluorescence -- 2.7.2 Auger Emission -- 2.7.3 Fluorescence or Auger? -- 2.8 Concluding Remarks -- References -- 3. Synchrotron Physics -- 3.1 Introduction -- 3.2 Overview -- 3.3 Radiation From Relativistic Electrons -- 3.3.1 Magnetic Deflection Fields -- 3.3.2 Radiated Power Loss in Synchrotrons -- 3.4 Radio Frequency Power Supply and Bunching -- 3.5 Photon Beam Properties -- 3.5.1 Flux and Brilliance -- 3.5.2 Emittance -- 3.5.3 Coherence -- 3.5.4 Polarization of Synchrotron Radiation
3.6 Bending Magnets and Superbends -- 3.7 Insertion Devices -- 3.7.1 Wigglers -- 3.7.2 Worked Example: The SLS Materials Science Beamline Wiggler -- 3.7.3 Undulators -- 3.8 Future Sources of Synchrotron Light -- 3.8.1 The Energy Recovery Linac -- 3.8.2 The Free-Electron Laser -- 3.8.3 Tabletop Synchrotrons -- 3.9 Concluding Remarks -- References -- 4. Beamlines -- 4.1 Introduction -- 4.2 Front End -- 4.2.1 Beam-Position Monitors -- 4.2.2 Primary Aperture and Front-End Slits -- 4.2.3 Low-Energy Filters -- 4.3 Primary Optics -- 4.3.1 X-ray Mirrors
4.3.2 Mirror Focal Lengths - The Coddington Equations -- 4.3.3 Monochromators -- 4.3.4 Focusing Geometry -- 4.4 Microfocus and Nanofocus Optics -- 4.4.1 Lens Types -- 4.5 Beam Intensity Monitors -- 4.6 Detectors -- 4.6.1 Photographic Plates -- 4.6.2 Scintillator Detectors -- 4.6.3 The Point-Spread Function -- 4.6.4 Crystal Analysers -- 4.6.5 Image Plates and Charge-Coupled Devices -- 4.6.6 Pixel and Microstrip Detectors -- 4.6.7 Energy-Dispersive Detectors -- 4.7 Time-Resolved Experiments -- 4.7.1 Avalanche Photodiodes -- 4.7.2 Streak Cameras -- 4.8 Concluding Remarks -- References
5. Scattering Techniques -- 5.1 Introduction -- 5.2 Diffraction at Synchrotron Sources -- 5.3 Description of Crystals -- 5.3.1 Lattices and Bases -- 5.3.2 Crystal Planes -- 5.3.3 Labelling Crystallographic Planes and Axes -- 5.4 Basic Tenets of X-ray Diffraction -- 5.4.1 Introduction -- 5.4.2 The Bragg Law and the Reciprocal Lattice -- 5.4.3 The Influence of the Basis -- 5.4.4 Kinematical and Dynamical Diffraction -- 5.5 Diffraction and the Convolution Theorem -- 5.5.1 The Convolution Theorem -- 5.5.2 Understanding the Structure Factor -- 5.6 The Phase Problem and Anomalous Diffraction
5.6.1 Introduction
Note 200 annual accesses. UkHlHU
ISBN 9781119972860

Links and services for this item: