Start Over Please hold this item Export MARC Display Return To Browse
 
     
Limit search to available items
Record: Previous Record Next Record
Author Singh, Mukesh Kumar.
Title Characterization of Polymers and Fibers.
Publisher San Diego : Elsevier Science & Technology, 2021.
Copyright date ©2022.



Descript 1 online resource (507 pages)
Content text txt
Media computer c
Carrier online resource cr
Contents Front Cover -- Characterization of Polymers and Fibers -- Copyright Page -- Dedication -- Contents -- Preface -- 1 Fibers and fiber-forming polymers -- 1.1 Introduction -- 1.2 Market outline -- 1.2.1 The need for natural fibers -- 1.3 Essential requirements for fiber-forming polymeric materials -- 1.3.1 Molecular weight -- 1.3.2 Flexibility -- 1.3.3 Configuration -- 1.3.4 Crystallinity -- 1.3.5 Orientation -- 1.3.6 Flexibility of molecular chains in fiber-forming polymers -- 1.3.7 Linearity -- 1.3.7.1 Atactic polymer -- 1.3.7.2 The syndiotactic polymer -- 1.3.7.3 The isotactic polymer -- 1.3.8 Hydrophilic potential of fiber-forming polymers -- 1.3.9 Chemical resistance -- 1.4 Drying of fiber-forming polymers before spinning -- 1.4.1 Moisture absorption -- 1.5 Need for polyethylene terephthalate chip drying before melt-spinning -- 1.6 Moisture removal -- 1.6.1 Moisture removal by diffusion process -- 1.6.2 Moisture removal by dehumidifying dryer -- 1.6.2.1 Hopper -- 1.6.2.2 Drying assembly -- 1.6.3 Essential attributes for effective drying -- 1.6.4 Regeneration -- 1.7 Continuous online moisture estimation -- 1.8 Melt flow index -- 1.8.1 MFI tester -- 1.8.2 Laboratory melt flow indexer -- 1.8.3 Features of LMI-4000 series melt flow tester -- 1.8.4 Melt flow tester (Indexer) 2000 series -- 1.9 Factors affected by moisture content -- 1.9.1 Air dew point -- 1.9.2 RH% -- 1.9.3 Intrinsic viscosity -- 1.10 Heat exchanger maintenance -- 1.11 Process control in dryer and regeneration -- 1.12 Fiber properties as per specific requirements -- 1.12.1 Fiber properties for apparel/domestic requirements -- 1.12.2 Industrial requirements -- 1.13 Basic textile fiber properties -- 1.14 Origin of fiber-manufacturing concept -- 1.15 Classification of fiber-manufacturing techniques -- 1.16 Conclusion -- References -- 2 Fiber extrusion melt-spinning -- 2.1 Introduction.
2.2 Extruder: single-screw extruder -- 2.2.1 Designing features of extruder -- 2.2.2 Various zones of single-screw extruder -- 2.2.3 Homogenization or mixing zone -- 2.3 Double-screw extruder -- 2.3.1 Various zones of a double-screw extruder -- 2.4 Spinning manifold -- 2.5 Spin pack -- 2.5.1 Pack life and reuse -- 2.5.2 Extended area screen packs -- 2.6 Static mixture -- 2.7 Metering pump -- 2.7.1 Zenith gear metering pumps -- 2.8 Polymer extrusion pump-II (PEP-II) series -- 2.9 Viscose metering gear pumps -- 2.10 Planetary pumps for fine denier melt fiber spinning -- 2.10.1 Pump selection -- 2.10.2 Pump mounting -- 2.11 Heat flow during melt-spinning -- 2.12 Spinning behavior of PET, PP, and Nylon 6 -- 2.13 Spinneret -- 2.13.1 Spinneret manufacturing -- 2.13.2 Current trends in spinneret manufacturing -- 2.13.3 Spinneret cleaning -- 2.13.4 Ultrasonic cleaning of spinning components -- 2.13.5 Roop telesonic spinneret cleaning system -- 2.14 Description -- 2.15 Spinneret cleaning instruments -- 2.16 Spinneret and spin pack cleaning -- 2.17 Spintrack spinneret inspection system -- 2.17.1 Other specific features of Spintrack -- 2.18 Conclusion -- References -- Further reading -- 3 Spin finish for natural and synthetic fibers -- 3.1 Introduction -- 3.2 Requirements to formulate an effective spin finish -- 3.2.1 Antistatic properties -- 3.2.2 Lubrication -- 3.2.3 Wetting -- 3.2.4 Emulsification -- 3.2.5 Safety -- 3.2.6 Antimicrobial -- 3.2.7 Viscosity -- 3.3 Removal of spin finish -- 3.3.1 Thermal stability -- 3.3.2 Biodegradation -- 3.4 Characterization of spin finish on fiber surface -- 3.4.1 Time-domain NMR -- 3.4.2 Method -- 3.4.3 Calibration and results -- 3.4.3.1 External antistatic agents -- 3.4.3.2 Internal antistatic agents -- 3.4.3.3 Antistats -- 3.4.3.4 Diethanolamides -- 3.5 Influence on antistatic behavior -- 3.6 Testing of antistatic agents.
3.7 Spin finish and friction -- 3.8 Stick-slip friction and velocity dependence -- 3.9 Spin finish application techniques -- 3.9.1 Regulated spin finish application technique -- 3.9.2 Dipping roller technique -- 3.9.3 Quench duct spin finish application technique -- 3.9.4 Spray spin finish technique -- 3.10 Conclusion -- References -- 4 Solution spinning: Dry spinning -- 4.1 Introduction -- 4.2 Difference between solution and melt spinning -- 4.3 Classification of solution spinning -- 4.4 Dope preparation -- 4.5 Wet spinning -- 4.5.1 Spinneret for solution spinning -- 4.5.2 Process control in wet spinning -- 4.5.3 Postcoagulation activities in wet spinning -- 4.5.4 Contribution to the fluid mechanics of viscose spinning -- 4.5.5 Latest achievements through wet spinning -- 4.6 Dry spinning -- 4.7 Alteration in the cross-sectional shape of fiber by dry spinning -- 4.8 Gel spinning -- 4.8.1 Liquid crystalline spinning -- 4.8.2 Phase separation spinning -- 4.8.2.1 Preconditioning of polymer dope for solution spinning -- 4.9 Solution blow spinning -- 4.10 Dry-jet wet spinning -- 4.10.1 Advances through dry-jet-wet spinning -- 4.11 Conclusion -- References -- Further reading -- 5 Regenerated fibers -- 5.1 Introduction -- 5.2 Viscose fiber-manufacturing -- 5.2.1 Steeping -- 5.2.1.1 Press weight ratio -- 5.2.2 Shredding -- 5.2.3 Aging -- 5.2.4 Xanthation -- 5.2.5 Dissolution -- 5.2.6 Filtration -- 5.2.7 Blending -- 5.2.8 Ripening -- 5.3 Viscose fiber-spinning -- 5.3.1 Zinc-free spinning bath -- 5.3.2 Zinc-based spinning bath -- 5.3.3 Spinning with modifiers -- 5.3.3.1 Types of modifiers -- 5.4 Applications of viscose fiber -- 5.5 Solvent used to dissolve wooden pulps -- 5.5.1 Organic solvent (direct solvent) -- 5.6 Modified high wet modulus yarns -- 5.7 Super high wet modulus rayon -- 5.8 Different types of rayons -- 5.9 Specialty rayons.
5.9.1 Flame-retardant fibers -- 5.9.2 Super absorbent rayons -- 5.9.3 Microdenier fibers -- 5.9.4 Cross-section modification -- 5.9.5 Tencel rayon -- 5.9.6 Lyocell -- 5.10 Structure of rayon -- 5.11 Conclusion -- References -- 6 Fiber characterization -- 6.1 Introduction -- 6.2 The conditions of temperature and humidity -- 6.3 Sample preparation -- 6.4 Fiber identification test -- 6.4.1 Nontechnical test -- 6.4.2 Microscope test -- 6.4.3 Longitudinal specimens -- 6.4.4 Chemical tests -- 6.4.4.1 Stain method -- 6.4.4.2 Solvent method -- 6.5 Actions against chemicals -- 6.5.1 Burning test of common textile fibers -- 6.6 Benefit of scanning electron microscopy (SEM) compared to a light microscope -- 6.7 X-ray microanalysis -- 6.8 Effect of spin finish applications -- 6.9 Conclusion -- References -- 7 Polymer and fiber characterization using X-ray diffraction -- 7.1 Introduction -- 7.2 Crystalline structure -- 7.2.1 Crystal size -- 7.2.2 Bravais lattices -- 7.2.3 Cubic lattices -- 7.2.3.1 Simple cubic lattice -- 7.2.3.2 Body-centered cubic lattice -- 7.2.3.3 Face-centered cubic lattice -- 7.2.3.4 Diamond lattice -- 7.2.3.5 Zincblende lattice -- 7.3 Fiber-forming polymer crystallization -- 7.4 Foundations of fiber-forming polymer crystallization theories -- 7.5 Bragg's law of XRD -- 7.6 Selection rules and practical crystallography -- 7.7 X-ray sample preparation -- 7.8 Developments in XRD techniques -- 7.8.1 Strengths -- 7.8.2 Limitations -- 7.9 Fiber sample preparation for XRD -- 7.10 Applications of XRD -- 7.10.1 Online X-ray measurement of melt-spun fibers -- 7.10.2 Calculation of crystallinity through XRD -- 7.10.3 Crystalline orientation -- 7.10.4 Herman's orientation factor -- 7.11 XRD of most common natural and synthetic fibers -- 7.12 Conclusion -- References -- 8 Overall orientation of textile fibers by sonic modulus and birefringence.
8.1 Introduction -- 8.2 Sonic modulus -- 8.3 Dependence of sonic velocity on orientation -- 8.4 Advantages of sonic modulus testing -- 8.5 Important remarks -- 8.6 Birefringence and refractive index of synthetic fibers -- 8.7 Polarization and birefringence -- 8.8 Conclusion -- References -- Further reading -- 9 Thermal characterization of materials using differential scanning calorimeter -- 9.1 Introduction -- 9.2 Definition of DSC -- 9.3 Various types of DSCs -- 9.3.1 Heat-flux DSC -- 9.3.2 Power-compensated DSC -- 9.3.3 DSC theory -- 9.3.4 Difference between a heat-flow and a heat-flux DSC -- 9.3.5 Double-furnace DSC 8500 by Perkin Elmer -- 9.3.6 Double-furnace DSC by Hitachi -- 9.4 Components of a DSC -- 9.4.1 Sample preparation for DSC -- 9.4.2 Different handling types of samples -- 9.4.3 Sample weight and heating rate -- 9.4.4 Sealing the crucible -- 9.5 Characterization using DSC -- 9.5.1 Crystallinity measurement using DSC -- 9.5.2 Fundamentals of Cp -- 9.5.3 Glass transition temperature -- 9.5.4 Crystallization during melting -- 9.5.5 Two melting endotherm peaks -- 9.5.6 Effect of cooling rate on crystallinity -- 9.5.7 Crystalline structure -- 9.5.8 Polymer blend identification -- 9.6 High-sensitivity characterization of transparency films -- 9.7 DSC applications in biological sciences -- 9.8 Conclusion -- References -- Further reading -- 10 Thermogravimetric analyzer -- 10.1 Introduction -- 10.2 Instrumentation and operating principles -- 10.3 Balance features and benefits -- 10.4 Basic features of TGA machine -- 10.5 Thermal stability of textile composite material using TGA -- 10.6 Applications of TGA analysis -- 10.7 Sample-controlled thermogravimetric analysis -- 10.8 Lifetime prediction and degradation kinetics -- 10.9 TGA study of modified nylon 66 -- 10.10 High-pressure TGA working.
10.11 TGA 2950 thermogravimetric analyzer by TA Instruments.
ISBN 9780128242391 (electronic bk.)
Click on the terms below to find similar items in the catalogue
Author Singh, Mukesh Kumar.
Series The Textile Institute Book Ser.
The Textile Institute Book Ser.
Alt author Singh, Annika.
Descript 1 online resource (507 pages)
Content text txt
Media computer c
Carrier online resource cr
Contents Front Cover -- Characterization of Polymers and Fibers -- Copyright Page -- Dedication -- Contents -- Preface -- 1 Fibers and fiber-forming polymers -- 1.1 Introduction -- 1.2 Market outline -- 1.2.1 The need for natural fibers -- 1.3 Essential requirements for fiber-forming polymeric materials -- 1.3.1 Molecular weight -- 1.3.2 Flexibility -- 1.3.3 Configuration -- 1.3.4 Crystallinity -- 1.3.5 Orientation -- 1.3.6 Flexibility of molecular chains in fiber-forming polymers -- 1.3.7 Linearity -- 1.3.7.1 Atactic polymer -- 1.3.7.2 The syndiotactic polymer -- 1.3.7.3 The isotactic polymer -- 1.3.8 Hydrophilic potential of fiber-forming polymers -- 1.3.9 Chemical resistance -- 1.4 Drying of fiber-forming polymers before spinning -- 1.4.1 Moisture absorption -- 1.5 Need for polyethylene terephthalate chip drying before melt-spinning -- 1.6 Moisture removal -- 1.6.1 Moisture removal by diffusion process -- 1.6.2 Moisture removal by dehumidifying dryer -- 1.6.2.1 Hopper -- 1.6.2.2 Drying assembly -- 1.6.3 Essential attributes for effective drying -- 1.6.4 Regeneration -- 1.7 Continuous online moisture estimation -- 1.8 Melt flow index -- 1.8.1 MFI tester -- 1.8.2 Laboratory melt flow indexer -- 1.8.3 Features of LMI-4000 series melt flow tester -- 1.8.4 Melt flow tester (Indexer) 2000 series -- 1.9 Factors affected by moisture content -- 1.9.1 Air dew point -- 1.9.2 RH% -- 1.9.3 Intrinsic viscosity -- 1.10 Heat exchanger maintenance -- 1.11 Process control in dryer and regeneration -- 1.12 Fiber properties as per specific requirements -- 1.12.1 Fiber properties for apparel/domestic requirements -- 1.12.2 Industrial requirements -- 1.13 Basic textile fiber properties -- 1.14 Origin of fiber-manufacturing concept -- 1.15 Classification of fiber-manufacturing techniques -- 1.16 Conclusion -- References -- 2 Fiber extrusion melt-spinning -- 2.1 Introduction.
2.2 Extruder: single-screw extruder -- 2.2.1 Designing features of extruder -- 2.2.2 Various zones of single-screw extruder -- 2.2.3 Homogenization or mixing zone -- 2.3 Double-screw extruder -- 2.3.1 Various zones of a double-screw extruder -- 2.4 Spinning manifold -- 2.5 Spin pack -- 2.5.1 Pack life and reuse -- 2.5.2 Extended area screen packs -- 2.6 Static mixture -- 2.7 Metering pump -- 2.7.1 Zenith gear metering pumps -- 2.8 Polymer extrusion pump-II (PEP-II) series -- 2.9 Viscose metering gear pumps -- 2.10 Planetary pumps for fine denier melt fiber spinning -- 2.10.1 Pump selection -- 2.10.2 Pump mounting -- 2.11 Heat flow during melt-spinning -- 2.12 Spinning behavior of PET, PP, and Nylon 6 -- 2.13 Spinneret -- 2.13.1 Spinneret manufacturing -- 2.13.2 Current trends in spinneret manufacturing -- 2.13.3 Spinneret cleaning -- 2.13.4 Ultrasonic cleaning of spinning components -- 2.13.5 Roop telesonic spinneret cleaning system -- 2.14 Description -- 2.15 Spinneret cleaning instruments -- 2.16 Spinneret and spin pack cleaning -- 2.17 Spintrack spinneret inspection system -- 2.17.1 Other specific features of Spintrack -- 2.18 Conclusion -- References -- Further reading -- 3 Spin finish for natural and synthetic fibers -- 3.1 Introduction -- 3.2 Requirements to formulate an effective spin finish -- 3.2.1 Antistatic properties -- 3.2.2 Lubrication -- 3.2.3 Wetting -- 3.2.4 Emulsification -- 3.2.5 Safety -- 3.2.6 Antimicrobial -- 3.2.7 Viscosity -- 3.3 Removal of spin finish -- 3.3.1 Thermal stability -- 3.3.2 Biodegradation -- 3.4 Characterization of spin finish on fiber surface -- 3.4.1 Time-domain NMR -- 3.4.2 Method -- 3.4.3 Calibration and results -- 3.4.3.1 External antistatic agents -- 3.4.3.2 Internal antistatic agents -- 3.4.3.3 Antistats -- 3.4.3.4 Diethanolamides -- 3.5 Influence on antistatic behavior -- 3.6 Testing of antistatic agents.
3.7 Spin finish and friction -- 3.8 Stick-slip friction and velocity dependence -- 3.9 Spin finish application techniques -- 3.9.1 Regulated spin finish application technique -- 3.9.2 Dipping roller technique -- 3.9.3 Quench duct spin finish application technique -- 3.9.4 Spray spin finish technique -- 3.10 Conclusion -- References -- 4 Solution spinning: Dry spinning -- 4.1 Introduction -- 4.2 Difference between solution and melt spinning -- 4.3 Classification of solution spinning -- 4.4 Dope preparation -- 4.5 Wet spinning -- 4.5.1 Spinneret for solution spinning -- 4.5.2 Process control in wet spinning -- 4.5.3 Postcoagulation activities in wet spinning -- 4.5.4 Contribution to the fluid mechanics of viscose spinning -- 4.5.5 Latest achievements through wet spinning -- 4.6 Dry spinning -- 4.7 Alteration in the cross-sectional shape of fiber by dry spinning -- 4.8 Gel spinning -- 4.8.1 Liquid crystalline spinning -- 4.8.2 Phase separation spinning -- 4.8.2.1 Preconditioning of polymer dope for solution spinning -- 4.9 Solution blow spinning -- 4.10 Dry-jet wet spinning -- 4.10.1 Advances through dry-jet-wet spinning -- 4.11 Conclusion -- References -- Further reading -- 5 Regenerated fibers -- 5.1 Introduction -- 5.2 Viscose fiber-manufacturing -- 5.2.1 Steeping -- 5.2.1.1 Press weight ratio -- 5.2.2 Shredding -- 5.2.3 Aging -- 5.2.4 Xanthation -- 5.2.5 Dissolution -- 5.2.6 Filtration -- 5.2.7 Blending -- 5.2.8 Ripening -- 5.3 Viscose fiber-spinning -- 5.3.1 Zinc-free spinning bath -- 5.3.2 Zinc-based spinning bath -- 5.3.3 Spinning with modifiers -- 5.3.3.1 Types of modifiers -- 5.4 Applications of viscose fiber -- 5.5 Solvent used to dissolve wooden pulps -- 5.5.1 Organic solvent (direct solvent) -- 5.6 Modified high wet modulus yarns -- 5.7 Super high wet modulus rayon -- 5.8 Different types of rayons -- 5.9 Specialty rayons.
5.9.1 Flame-retardant fibers -- 5.9.2 Super absorbent rayons -- 5.9.3 Microdenier fibers -- 5.9.4 Cross-section modification -- 5.9.5 Tencel rayon -- 5.9.6 Lyocell -- 5.10 Structure of rayon -- 5.11 Conclusion -- References -- 6 Fiber characterization -- 6.1 Introduction -- 6.2 The conditions of temperature and humidity -- 6.3 Sample preparation -- 6.4 Fiber identification test -- 6.4.1 Nontechnical test -- 6.4.2 Microscope test -- 6.4.3 Longitudinal specimens -- 6.4.4 Chemical tests -- 6.4.4.1 Stain method -- 6.4.4.2 Solvent method -- 6.5 Actions against chemicals -- 6.5.1 Burning test of common textile fibers -- 6.6 Benefit of scanning electron microscopy (SEM) compared to a light microscope -- 6.7 X-ray microanalysis -- 6.8 Effect of spin finish applications -- 6.9 Conclusion -- References -- 7 Polymer and fiber characterization using X-ray diffraction -- 7.1 Introduction -- 7.2 Crystalline structure -- 7.2.1 Crystal size -- 7.2.2 Bravais lattices -- 7.2.3 Cubic lattices -- 7.2.3.1 Simple cubic lattice -- 7.2.3.2 Body-centered cubic lattice -- 7.2.3.3 Face-centered cubic lattice -- 7.2.3.4 Diamond lattice -- 7.2.3.5 Zincblende lattice -- 7.3 Fiber-forming polymer crystallization -- 7.4 Foundations of fiber-forming polymer crystallization theories -- 7.5 Bragg's law of XRD -- 7.6 Selection rules and practical crystallography -- 7.7 X-ray sample preparation -- 7.8 Developments in XRD techniques -- 7.8.1 Strengths -- 7.8.2 Limitations -- 7.9 Fiber sample preparation for XRD -- 7.10 Applications of XRD -- 7.10.1 Online X-ray measurement of melt-spun fibers -- 7.10.2 Calculation of crystallinity through XRD -- 7.10.3 Crystalline orientation -- 7.10.4 Herman's orientation factor -- 7.11 XRD of most common natural and synthetic fibers -- 7.12 Conclusion -- References -- 8 Overall orientation of textile fibers by sonic modulus and birefringence.
8.1 Introduction -- 8.2 Sonic modulus -- 8.3 Dependence of sonic velocity on orientation -- 8.4 Advantages of sonic modulus testing -- 8.5 Important remarks -- 8.6 Birefringence and refractive index of synthetic fibers -- 8.7 Polarization and birefringence -- 8.8 Conclusion -- References -- Further reading -- 9 Thermal characterization of materials using differential scanning calorimeter -- 9.1 Introduction -- 9.2 Definition of DSC -- 9.3 Various types of DSCs -- 9.3.1 Heat-flux DSC -- 9.3.2 Power-compensated DSC -- 9.3.3 DSC theory -- 9.3.4 Difference between a heat-flow and a heat-flux DSC -- 9.3.5 Double-furnace DSC 8500 by Perkin Elmer -- 9.3.6 Double-furnace DSC by Hitachi -- 9.4 Components of a DSC -- 9.4.1 Sample preparation for DSC -- 9.4.2 Different handling types of samples -- 9.4.3 Sample weight and heating rate -- 9.4.4 Sealing the crucible -- 9.5 Characterization using DSC -- 9.5.1 Crystallinity measurement using DSC -- 9.5.2 Fundamentals of Cp -- 9.5.3 Glass transition temperature -- 9.5.4 Crystallization during melting -- 9.5.5 Two melting endotherm peaks -- 9.5.6 Effect of cooling rate on crystallinity -- 9.5.7 Crystalline structure -- 9.5.8 Polymer blend identification -- 9.6 High-sensitivity characterization of transparency films -- 9.7 DSC applications in biological sciences -- 9.8 Conclusion -- References -- Further reading -- 10 Thermogravimetric analyzer -- 10.1 Introduction -- 10.2 Instrumentation and operating principles -- 10.3 Balance features and benefits -- 10.4 Basic features of TGA machine -- 10.5 Thermal stability of textile composite material using TGA -- 10.6 Applications of TGA analysis -- 10.7 Sample-controlled thermogravimetric analysis -- 10.8 Lifetime prediction and degradation kinetics -- 10.9 TGA study of modified nylon 66 -- 10.10 High-pressure TGA working.
10.11 TGA 2950 thermogravimetric analyzer by TA Instruments.
ISBN 9780128242391 (electronic bk.)
Author Singh, Mukesh Kumar.
Series The Textile Institute Book Ser.
The Textile Institute Book Ser.
Alt author Singh, Annika.

Descript 1 online resource (507 pages)
Content text txt
Media computer c
Carrier online resource cr
Contents Front Cover -- Characterization of Polymers and Fibers -- Copyright Page -- Dedication -- Contents -- Preface -- 1 Fibers and fiber-forming polymers -- 1.1 Introduction -- 1.2 Market outline -- 1.2.1 The need for natural fibers -- 1.3 Essential requirements for fiber-forming polymeric materials -- 1.3.1 Molecular weight -- 1.3.2 Flexibility -- 1.3.3 Configuration -- 1.3.4 Crystallinity -- 1.3.5 Orientation -- 1.3.6 Flexibility of molecular chains in fiber-forming polymers -- 1.3.7 Linearity -- 1.3.7.1 Atactic polymer -- 1.3.7.2 The syndiotactic polymer -- 1.3.7.3 The isotactic polymer -- 1.3.8 Hydrophilic potential of fiber-forming polymers -- 1.3.9 Chemical resistance -- 1.4 Drying of fiber-forming polymers before spinning -- 1.4.1 Moisture absorption -- 1.5 Need for polyethylene terephthalate chip drying before melt-spinning -- 1.6 Moisture removal -- 1.6.1 Moisture removal by diffusion process -- 1.6.2 Moisture removal by dehumidifying dryer -- 1.6.2.1 Hopper -- 1.6.2.2 Drying assembly -- 1.6.3 Essential attributes for effective drying -- 1.6.4 Regeneration -- 1.7 Continuous online moisture estimation -- 1.8 Melt flow index -- 1.8.1 MFI tester -- 1.8.2 Laboratory melt flow indexer -- 1.8.3 Features of LMI-4000 series melt flow tester -- 1.8.4 Melt flow tester (Indexer) 2000 series -- 1.9 Factors affected by moisture content -- 1.9.1 Air dew point -- 1.9.2 RH% -- 1.9.3 Intrinsic viscosity -- 1.10 Heat exchanger maintenance -- 1.11 Process control in dryer and regeneration -- 1.12 Fiber properties as per specific requirements -- 1.12.1 Fiber properties for apparel/domestic requirements -- 1.12.2 Industrial requirements -- 1.13 Basic textile fiber properties -- 1.14 Origin of fiber-manufacturing concept -- 1.15 Classification of fiber-manufacturing techniques -- 1.16 Conclusion -- References -- 2 Fiber extrusion melt-spinning -- 2.1 Introduction.
2.2 Extruder: single-screw extruder -- 2.2.1 Designing features of extruder -- 2.2.2 Various zones of single-screw extruder -- 2.2.3 Homogenization or mixing zone -- 2.3 Double-screw extruder -- 2.3.1 Various zones of a double-screw extruder -- 2.4 Spinning manifold -- 2.5 Spin pack -- 2.5.1 Pack life and reuse -- 2.5.2 Extended area screen packs -- 2.6 Static mixture -- 2.7 Metering pump -- 2.7.1 Zenith gear metering pumps -- 2.8 Polymer extrusion pump-II (PEP-II) series -- 2.9 Viscose metering gear pumps -- 2.10 Planetary pumps for fine denier melt fiber spinning -- 2.10.1 Pump selection -- 2.10.2 Pump mounting -- 2.11 Heat flow during melt-spinning -- 2.12 Spinning behavior of PET, PP, and Nylon 6 -- 2.13 Spinneret -- 2.13.1 Spinneret manufacturing -- 2.13.2 Current trends in spinneret manufacturing -- 2.13.3 Spinneret cleaning -- 2.13.4 Ultrasonic cleaning of spinning components -- 2.13.5 Roop telesonic spinneret cleaning system -- 2.14 Description -- 2.15 Spinneret cleaning instruments -- 2.16 Spinneret and spin pack cleaning -- 2.17 Spintrack spinneret inspection system -- 2.17.1 Other specific features of Spintrack -- 2.18 Conclusion -- References -- Further reading -- 3 Spin finish for natural and synthetic fibers -- 3.1 Introduction -- 3.2 Requirements to formulate an effective spin finish -- 3.2.1 Antistatic properties -- 3.2.2 Lubrication -- 3.2.3 Wetting -- 3.2.4 Emulsification -- 3.2.5 Safety -- 3.2.6 Antimicrobial -- 3.2.7 Viscosity -- 3.3 Removal of spin finish -- 3.3.1 Thermal stability -- 3.3.2 Biodegradation -- 3.4 Characterization of spin finish on fiber surface -- 3.4.1 Time-domain NMR -- 3.4.2 Method -- 3.4.3 Calibration and results -- 3.4.3.1 External antistatic agents -- 3.4.3.2 Internal antistatic agents -- 3.4.3.3 Antistats -- 3.4.3.4 Diethanolamides -- 3.5 Influence on antistatic behavior -- 3.6 Testing of antistatic agents.
3.7 Spin finish and friction -- 3.8 Stick-slip friction and velocity dependence -- 3.9 Spin finish application techniques -- 3.9.1 Regulated spin finish application technique -- 3.9.2 Dipping roller technique -- 3.9.3 Quench duct spin finish application technique -- 3.9.4 Spray spin finish technique -- 3.10 Conclusion -- References -- 4 Solution spinning: Dry spinning -- 4.1 Introduction -- 4.2 Difference between solution and melt spinning -- 4.3 Classification of solution spinning -- 4.4 Dope preparation -- 4.5 Wet spinning -- 4.5.1 Spinneret for solution spinning -- 4.5.2 Process control in wet spinning -- 4.5.3 Postcoagulation activities in wet spinning -- 4.5.4 Contribution to the fluid mechanics of viscose spinning -- 4.5.5 Latest achievements through wet spinning -- 4.6 Dry spinning -- 4.7 Alteration in the cross-sectional shape of fiber by dry spinning -- 4.8 Gel spinning -- 4.8.1 Liquid crystalline spinning -- 4.8.2 Phase separation spinning -- 4.8.2.1 Preconditioning of polymer dope for solution spinning -- 4.9 Solution blow spinning -- 4.10 Dry-jet wet spinning -- 4.10.1 Advances through dry-jet-wet spinning -- 4.11 Conclusion -- References -- Further reading -- 5 Regenerated fibers -- 5.1 Introduction -- 5.2 Viscose fiber-manufacturing -- 5.2.1 Steeping -- 5.2.1.1 Press weight ratio -- 5.2.2 Shredding -- 5.2.3 Aging -- 5.2.4 Xanthation -- 5.2.5 Dissolution -- 5.2.6 Filtration -- 5.2.7 Blending -- 5.2.8 Ripening -- 5.3 Viscose fiber-spinning -- 5.3.1 Zinc-free spinning bath -- 5.3.2 Zinc-based spinning bath -- 5.3.3 Spinning with modifiers -- 5.3.3.1 Types of modifiers -- 5.4 Applications of viscose fiber -- 5.5 Solvent used to dissolve wooden pulps -- 5.5.1 Organic solvent (direct solvent) -- 5.6 Modified high wet modulus yarns -- 5.7 Super high wet modulus rayon -- 5.8 Different types of rayons -- 5.9 Specialty rayons.
5.9.1 Flame-retardant fibers -- 5.9.2 Super absorbent rayons -- 5.9.3 Microdenier fibers -- 5.9.4 Cross-section modification -- 5.9.5 Tencel rayon -- 5.9.6 Lyocell -- 5.10 Structure of rayon -- 5.11 Conclusion -- References -- 6 Fiber characterization -- 6.1 Introduction -- 6.2 The conditions of temperature and humidity -- 6.3 Sample preparation -- 6.4 Fiber identification test -- 6.4.1 Nontechnical test -- 6.4.2 Microscope test -- 6.4.3 Longitudinal specimens -- 6.4.4 Chemical tests -- 6.4.4.1 Stain method -- 6.4.4.2 Solvent method -- 6.5 Actions against chemicals -- 6.5.1 Burning test of common textile fibers -- 6.6 Benefit of scanning electron microscopy (SEM) compared to a light microscope -- 6.7 X-ray microanalysis -- 6.8 Effect of spin finish applications -- 6.9 Conclusion -- References -- 7 Polymer and fiber characterization using X-ray diffraction -- 7.1 Introduction -- 7.2 Crystalline structure -- 7.2.1 Crystal size -- 7.2.2 Bravais lattices -- 7.2.3 Cubic lattices -- 7.2.3.1 Simple cubic lattice -- 7.2.3.2 Body-centered cubic lattice -- 7.2.3.3 Face-centered cubic lattice -- 7.2.3.4 Diamond lattice -- 7.2.3.5 Zincblende lattice -- 7.3 Fiber-forming polymer crystallization -- 7.4 Foundations of fiber-forming polymer crystallization theories -- 7.5 Bragg's law of XRD -- 7.6 Selection rules and practical crystallography -- 7.7 X-ray sample preparation -- 7.8 Developments in XRD techniques -- 7.8.1 Strengths -- 7.8.2 Limitations -- 7.9 Fiber sample preparation for XRD -- 7.10 Applications of XRD -- 7.10.1 Online X-ray measurement of melt-spun fibers -- 7.10.2 Calculation of crystallinity through XRD -- 7.10.3 Crystalline orientation -- 7.10.4 Herman's orientation factor -- 7.11 XRD of most common natural and synthetic fibers -- 7.12 Conclusion -- References -- 8 Overall orientation of textile fibers by sonic modulus and birefringence.
8.1 Introduction -- 8.2 Sonic modulus -- 8.3 Dependence of sonic velocity on orientation -- 8.4 Advantages of sonic modulus testing -- 8.5 Important remarks -- 8.6 Birefringence and refractive index of synthetic fibers -- 8.7 Polarization and birefringence -- 8.8 Conclusion -- References -- Further reading -- 9 Thermal characterization of materials using differential scanning calorimeter -- 9.1 Introduction -- 9.2 Definition of DSC -- 9.3 Various types of DSCs -- 9.3.1 Heat-flux DSC -- 9.3.2 Power-compensated DSC -- 9.3.3 DSC theory -- 9.3.4 Difference between a heat-flow and a heat-flux DSC -- 9.3.5 Double-furnace DSC 8500 by Perkin Elmer -- 9.3.6 Double-furnace DSC by Hitachi -- 9.4 Components of a DSC -- 9.4.1 Sample preparation for DSC -- 9.4.2 Different handling types of samples -- 9.4.3 Sample weight and heating rate -- 9.4.4 Sealing the crucible -- 9.5 Characterization using DSC -- 9.5.1 Crystallinity measurement using DSC -- 9.5.2 Fundamentals of Cp -- 9.5.3 Glass transition temperature -- 9.5.4 Crystallization during melting -- 9.5.5 Two melting endotherm peaks -- 9.5.6 Effect of cooling rate on crystallinity -- 9.5.7 Crystalline structure -- 9.5.8 Polymer blend identification -- 9.6 High-sensitivity characterization of transparency films -- 9.7 DSC applications in biological sciences -- 9.8 Conclusion -- References -- Further reading -- 10 Thermogravimetric analyzer -- 10.1 Introduction -- 10.2 Instrumentation and operating principles -- 10.3 Balance features and benefits -- 10.4 Basic features of TGA machine -- 10.5 Thermal stability of textile composite material using TGA -- 10.6 Applications of TGA analysis -- 10.7 Sample-controlled thermogravimetric analysis -- 10.8 Lifetime prediction and degradation kinetics -- 10.9 TGA study of modified nylon 66 -- 10.10 High-pressure TGA working.
10.11 TGA 2950 thermogravimetric analyzer by TA Instruments.
Alt author Singh, Annika.
ISBN 9780128242391 (electronic bk.)

Links and services for this item: